COURS DE MATHÉMATIQUES Terminale L

Valère Bonnet (valere.bonnet@gmail.com)

12 septembre 2010

Lycée PONTUS DE TYARD 13 rue des Gaillardons 71100 CHALON SUR SAÔNE Tél. : (33) 03 85 46 85 40 Fax : (33) 03 85 46 85 59

FRANCE

Table des matières

Ta	able d	les matières	iii
Ι	EN	SEIGNEMENT DE SPÉCIALITÉ	1
Ι		ites numériques	3
	I.1	Limites de références	3
	I.2	Opérations algébriques sur les limites	3
	I.3	Suites arithmétiques, suites géométriques	
In	ıdex		5

iv Table des matières

Première partie ENSEIGNEMENT DE SPÉCIALITÉ

Chapitre I

Suites numériques

I.1 Limites de références

THÉORÈME I.1.1

Soit k un nombre réel tel que k > 0:

$$\lim_{n \to +\infty} n^k = +\infty \qquad \text{et} \qquad \lim_{n \to +\infty} \frac{1}{n^k} = 0$$

Remarque En particulier:

$$\lim_{n \to +\infty} \sqrt{n} = +\infty \qquad \lim_{n \to +\infty} n = +\infty \qquad \lim_{n \to +\infty} n^2 = +\infty \qquad \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \qquad \lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \lim_{n \to +\infty} \frac{1}{n^2} = 0.$$

THÉORÈME I.1.2

Soit q un nombre réel. Le comportement de q^n lorsque n tend vers $+\infty$ est donné par le tableau suivant.

	$q \leq -1$	-1 < q < 1	q = 1	1 < q
$\lim_{n\to+\infty}q^n$	pas de limite	0	1	+∞

Remarque La condition, -1 < q < 1, s'exprime souvent sous la forme : |q| < 1

I.2 Opérations algébriques sur les limites

Nous admettons les résultats suivants concernant la limite de la somme, du produit ou du quotient de deux suites. Le symbole « fi » signifie : forme indéterminée ; cela signifie que lers règles usuelles liant les opérations et le calcul de limites ne permettent pas de déterminer la limite éventuelle dans la configuration étudiée.

Limite de la somme de deux suites

$\lim_{n\to+\infty}u_n$	ℓ	+∞	$-\infty$	+∞	$-\infty$	+∞
$\lim_{n\to+\infty} \nu_n$	ℓ'	ℓ'	ℓ'	$+\infty$	$-\infty$	$-\infty$
$\lim_{n\to+\infty}(u_n+v_n)$	$\ell + \ell'$	+∞	$-\infty$	+∞	$-\infty$	fi

Limite du produit de deux suites

$\lim_{n\to+\infty}u_n$	ℓ	+∞	$-\infty$	+∞ ou −∞	+∞	$-\infty$	+∞
$\lim_{n\to+\infty} \nu_n$	ℓ'	$\ell' \ (\ell' \neq 0)$	$\ell' \ (\ell' \neq 0)$	0	+∞	$-\infty$	$-\infty$
$\lim_{n\to+\infty}(u_nv_n)$	$\ell\ell'$	$\begin{cases} +\infty & , \operatorname{si} \ell' > 0 \\ -\infty & , \operatorname{si} \ell' < 0 \end{cases}$	$\begin{cases} -\infty & , \sin \ell' > 0 \\ +\infty & , \sin \ell' < 0 \end{cases}$	fi	+∞	+∞	$-\infty$

I. Suites numériques

Limite de l'inverse d'une suite

On suppose ici que la suite de terme général $\frac{1}{\nu_n}$ est bien définie.

$\lim_{n\to+\infty}u_n$	$\ell \ (\ell \neq 0)$	+∞	$-\infty$	0
$\lim_{n\to+\infty}\frac{1}{u_n}$	$\frac{1}{\ell}$	0	0	$\begin{cases} +\infty \text{ , si } (u_n) \text{est strictement positive à partir d'un certain indice} \\ -\infty \text{ , si } (u_n) \text{est strictement négative à partir d'un certain indice} \end{cases}$

Limite du quotient de deux suites

On suppose ici que la suite de terme général $\frac{u_n}{v_n}$ est bien définie. Pour calculer la limite de la suite de terme général $\frac{u_n}{v_n}$, il suffit de remarquer que pour tout nombre entier, n, ou elle

est définie : $\frac{u_n}{v_n} = u_n \times \frac{1}{v_n}$. Le résultat désiré se déduit alors des considérations sur les limites de somme et d'inverse de suites.

Suites arithmétiques, suites géométriques **I.3**

	suites arithmétiques	suites géométriques		
Définition par récur-				
rence	$\int u_{n_0} = a$	$\int u_{n_0} = a$		
	$\begin{cases} u_{n_0} = a \\ \forall n \ge n_0, \ u_{n+1} = u_n + r \end{cases}$	$\begin{cases} u_{n_0} = a \\ \forall n \ge n_0, \ u_{n+1} = qu_n \end{cases}$		
	Le premier terme est, $u_{n_0} = a$ et la raison est r .	Le premier terme est, $u_{n_0} = a$ et la raison est q .		
I es suite	s arithmétiques et géométriques sont déterminées			
relation entre deux	Pour $n \ge n_0$ et $p \ge n_0$:	Pour $n \ge n_0$ et $p \ge n_0$:		
	Four $n \ge n_0$ et $p \ge n_0$.	Four $n \ge n_0$ et $p \ge n_0$.		
termes	u = u + r(n - n)	$u = u \cdot a^{n-p}$		
	$u_n = u_p + r(n-p)$	$u_n = u_p q^{n-p}$		
expression explicite	Pour $n \ge n_0$:	Pour $n \ge n_0$:		
1 1	·			
	$u_n = u_{n_0} + r(n - n_0)$	$u_n = u_{n_0} q^{n-n_0}$		
Plus généralement :				
ou k désigne une	$u_n = rn + k$	$u_n = k \times q^n$		
constante				
en particulier pour :	Pour $n \ge 0$:	Pour $n \ge 0$:		
$n_0 = 0$	$u_n = u_0 + nr$	$u_n = u_0 q^n$		
Common do torres				
Somme de termes	$n u_n + u_r$	$n \qquad \mu_n = \mu_{n+1}$		
consécutifs	$\sum_{k=p}^{n} u_k = (n-p+1) \frac{u_p + u_n}{2}$	$\sum_{k=n}^{n} u_k = \frac{u_p - u_{n+1}}{1 - q}$		
	k=p	k=p $1-q$		
	somme = nombres de termes×moyenne des extrêmes	somme = premier terme – suivant du dernier		
		$somme = \frac{Promot terms}{1 - raison}$		
		1 – 1415011		