À rendre le lundi 18 octobre 2010

DEVOIR EN TEMPS LIBRE N° 2

EXERCICE I

On considère deux suites de nombres réels, $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par :

$$u_n = \sin\frac{1}{n^2} + \sin\frac{2}{n^2} + \dots + \sin\frac{n}{n^2}$$
 et $v_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$

- **1.** Démontrer que la suite (v_n) converge vers $\frac{1}{2}$.
- **2.a.** Démontrer que les fonctions f_1 , f_2 et f_3 définies par :

$$f_1(x) = x - \sin x$$

$$f_2(x) = -1 + \frac{x^2}{2} + \cos x$$

$$f_3(x) = -x + \frac{x^3}{6} + \sin x$$

sont positives sur $[0; +\infty[$.

(On pourra déduire les variations de chaque fonction des variations de la précédente.)

b. Justifier que pour tout $n \ge 1$:

$$1^3 + 2^3 + \dots + n^3 \le n^4.$$

Déduire de 2.a. l'inégalité :

$$v_n - \frac{1}{6} \times \frac{1}{n^2} \le u_n \le v_n$$

pour tout entier naturel n non nul.

c. Démontrer que la suite (u_n) est convergente et déterminer sa limite.

3.a. justifier que les fonctions f_4 et f_5 définies par :

$$f_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cos x$$
$$f_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \sin x$$

sont positives sur $[0; +\infty[$.

b. On admet que si une fonction paire admet une limite à droite en 0, alors elle admet la même limite à gauche en 0.

Étudier la limite en 0 de la fonction, $d: x \mapsto \frac{\sin(x) - x}{x^3}$.